Мрт сигнал ви что это такое

Мрт сигнал ви что это такое thumbnail

Если мне нужно сделать фотографию, я достаю из кармана мобильник, выбираю фотоприложение, навожу объектив на понравившийся объект и… щёлк! В 99% случаев я получаю снимок, который сносно отображает необходимый фрагмент реальности.

А ведь ещё несколько десятилетий назад фотографы вручную выставляли выдержку и диафрагму, выбирали фотоплёнку, устраивали проявочную лабораторию в ванной комнате. А снимки получались… ну, такие себе.

Магнитно резонансная томография — потрясающая методика. Для врача, который осознанно управляет параметрами сканирования, она предоставляет огромные возможности в визуализации тканей человеческого организма и патологических процессов.

В зависимости от настроек, одни и те же ткани могут совершенно по разному выглядеть на МР томограммах. Для относительной простоты интерпретации существует несколько более-менее стандартных «режимов» сканирования. Это сделано для того, чтобы МРТ, из категории методик, которыми владеют только одиночки-энтузиасты, пришла в широкую медицинскую практику. Как методика фотографии, которая упростилась настолько, что не только стала доступна каждому, но и порядком успела многим надоесть 😉

Здесь я расскажу о нескольких наиболее часто использующихся режимах сканирования. Поехали!

Т1 ВИ (читается «тэ один вэ и») — режим сканирования, который используется всегда и везде. Свободная безбелковая жидкость (например ликвор в желудочках мозга) на таких изображениях выглядит тёмной, мягкие ткани имеют различные по яркости оттенки серого, а вот жир ярок настолько, что кажется белым. Также на Т1 ВИ очень яркими выглядят парамагнитные контрастные вещества, что и позволяет использовать их для визуализации различных патологических процессов.

Слева — Т1 ВИ, а справа — Т1 ВИ после введения контраста. Опухоль накопила парамагнитный контраст. Просто и красиво!

А ещё на Т1 яркой будет выглядеть гематома на определённых стадиях деградации гемаглобина.

В МРТ «яркий» обозначается термином «гиперинтенсивный»,а «тёмный» — термином «гипоинтенсивный».

Т2 ВИ (читается «тэ два вэ и») — также используется повсеместно. Этот режим наиболее чувствителен к регистрации патологических процессов. Это значит, что большинство патологических очагов, например в головном мозге, будут гиперинтенсивными на Т2 ВИ. А вот определение какой именно патологический процесс мы видим требует применения других режимов сканирования. Помимо патологических процессов и тканей, яркой на Т2 будет свободная жидкость (тот же ликвор в желудочках).

Т2 ВИ — классика в визуализации головного мозга. И вообще, любимая картинка всех МРТшников.

Аббревиатура «ВИ» расшифровывается как «взвешенные изображения». Но боюсь, мне не удастся объяснить смысл этого заклинания без углубления в физику метода.

Pd ВИ (читается «пэ дэ вэ и») — изображения взвешенные по протонной плотности. Что-то среднее между Т1 и Т2 ВИ. Применяется достаточно редко, в связи с появлением более прогрессивных режимов сканирования. Контрастность между разными тканями и жидкостями на таких изображениях довольно низкая. Однако, при исследовании суставов этот режим продолжает пользоваться популярностью, особенно в комплексе с жироподавлением, о котором разговор отдельный.

Слева — Pd ВИ, справа — Т2 ВИ. Одному мне понятно, почему Pd теперь редко используют ?

Словосочетание «режим сканирования» конечно можно использовать, но правильнее использовать словосочетание «импульсная последовательность». Речь про набор радиочастотных и градиентных импульсов, которые используются во время сканирования.

FLAIR (произносится как «флаир» или «флэир») — это Т2 ВИ с ослаблением сигнала от свободной жидкости, например, спинномозговой жидкости. Очень полезная импульсная последовательность, применяется в основном при сканировании головного мозга. На таких изображениях многие патологические очаги видны лучше чем на Т2 ВИ, особенно если они прилежат к пространствам, которые содержат ликвор.

Здесь FLAIR — крайняя картинка справа. Именно на ней лучше всего видны патологические очаги, которые прилежат к желудочкам мозга и субарахноидальному пространству.

Это режимы сканирования или импульсные последовательности, которые наиболее часто используются в ежедневной практике. Но есть ещё много других, которые применяются реже и дают более специфическую информацию.

P.S. Если вам интересно узнать, что такое жиродав и каим он бывает — обязательно поставьте лайк статье, подпишитесь на мой канал в ЯндексДзен или в telegram — так я буду знать, что вы требуете продолжения 😉

Источник

Но почему именно водород?
Все живые организмы и органические вещества содержат атомы водорода. В организме его до 67%. Сами по себе ядра водорода вращаются вокруг своей оси и создают маленькие магнитные поля. При помещении пациента в постоянное магнитное поле, ядра водорода упорядочиваются вдоль силовых линий магнитного поля и колеблются. Эти колебание называется прецессией. Далее подаётся электромагнитный импульс, который сообщает энергию ядрам водорода, и они меняют свой угол наклона. Для поглощения импульс должен быть такой же частоты, с которой колеблются ядра водорода, и опять-таки, именно у атомов водорода эта частота самая большая и энергии поглощается максимально много. Как только мы убираем электромагнитный импульс, ядра возвращаются в исходное положение и испускают энергию, которую регистрирует томограф, а компьютер из этих данных реконструирует изображения. Время, за которое протоны возвращаются к равновесному состоянию, после воздействия на них электромагнитного импульса, называется время релаксации. Оно различно у здоровых и патологичных тканей, и зависит от окружающих молекул и атомов, на основе этой разницы и строятся МР-изображения. Различают два основных времени релаксации – Т1 и Т2.
Т1 – это время, за которое спины 63% протонов возвращаются к равновесному состоянию.
Т2 – это время, за которое спины 63% протонов сдвигаются по фазе (расфазируются) под действием соседних протонов.

Читайте также:  Что выявляется на мрт головы

Клиническое значение магнито-резонансных секвенций и проекций.
Т1 ВИ используется для лучшей визуализации анатомических структур. Костные структуры преимущественно гипоинтенсивные, жидкость гипоинтенсивная, жир гиперинтенсивный. Очаги воспаления или новообразования могут иметь различную степень интенсивности. Т1 ВИ также используется для исследований с контрастирующим веществом.
Т2 ВИ используется для детального исследования патологических очагов. Жидкость, очаги воспаления будут иметь гиперинтенсивный сигнал, многие новообразования, также будут иметь повышенный сигнал по Т2.
Гематомы будут менять степень интенсивности в зависимости от срока существования, как на Т1, так и на Т2 ВИ.
FALIR или dark fluid – это частный случай Т2-взвешенного изображения, при котором подавляется сигнал от свободной жидкости (например, ликвора). Повреждения, которые при обычной Т2 контрастности перекрыты сигналами яркого ликвора, делаются видимыми с помощью метода FLAIR. Также используется для дифференцировки ликвора от жидкости с повышенным содержанием белка (очаги воспаления, онкологические кисты, абсцессы итд).
Т2-myelo – также является частным случаем Т2 ВИ изображения, в отличие от FLAIR, в этом случае поучается сигнал исключительно от свободной жидкости. Полученное МР-изображение по смыслу сходно с миелографией, проводимой с помощью рентгена и введения контраста в субарахноидальное пространство, только в данном случае контраст не вводится. Будут визуализироваться затемнения в очагах отека спинного мозга или компрессии.
T2*GRE – используется для обнаружения гематом в хронической стадии, которые будут визуализироваться гипоинтенсивными очагами.
STIR – программа подавления сигнала от жира. Преимущественно используется для исследований в ортопедии и брюшной полости, иногда применяется при исследованиях позвоночника и головного мозга.
T2 СISS – программа Siemens для исследования грудной клетки и легких. В нашей практике используется при необходимости детального исследования очага и проведения максимально тонких срезов.

Контрастирующие вещества.
Контрастное усиление проводится для выявления очагов нарушения гемато-энцефалического барьера.
Мы используем контрастирование всегда при исследовании головного мозга, кроме редких исключений, поскольку иногда изменения могут быть настолько слабо выраженные, что не будут заметны при стандартном рутинном исследовании. После введения контраста, можно обнаружить измененный участок или уточнить его границы распространения. При исследовании спинного мозга контрастирование проводится при подозрении на новообразования, или очаги воспалительного процесса.
В качестве контрастирующего агента используются вещества на основе редкоземельного металла гадолиния, в результате чего стоимость их относительно высока. Вводятся внутривенно и являются безопасными препаратами. Осложнения, с которыми мы встречались у животных в нашей практике – легкое повышение температуры, однако возможны реакции индивидуальной непереносимости.

Пространственная ориентация срезов.
Для исследования головного мозга рекомендуется получать срезы в трёх взаимно перпендикулярных проекциях: корональные (фронтальные, дорсальные), аксиальные (горизонтальные, поперечные или трансверзальные) и сагиттальные срезы. При исследовании спинного мозга и позвоночника зачастую можно обойтись только сагиттальным и аксиальными срезами.

Итак, возможность проведения качественного МРТ и интерпретация МР-томограмм должны стать важным инструментом у врачей невропатологов и хирургов и не должны вызвать никаких проблем!

Понятия: МРТ — магнито-резонансная томография, МР-томограмма — магнито-резонансная томограмма, МР-изображение — магнито-резонансное изображение.

Источник

Магнитный резонанс, или, как его называли и по-прежнему называют в естественных науках, — ядерный магнитный резонанс (ЯМР), — это явление, впервые упомянутое в научной литературе в 1946 г. учеными США F.Bloch и E.Purcell. После включения ЯМР в число методов медицинской визуализации слово «ядерный» было опущено. Современное название метода магнитно-резонансная томография (МРТ) трансформировалось из более раннего названия — ЯМР исключительно из соображений маркетинга и радиофобии населения. Основными элементами магнитно-резонансного томографа являются: магнит, генерирующий сильное магнитное поле; излучатель радиочастотных импульсов; приемная катушка-детектор, улавливающая ответный сигнал тканей во время релаксации; компьютерная система для преобразования получаемых с катушки-детектора сигналов в изображение, выводимое на монитор для визуальной оценки.

В основе метода МРТ лежит явление ЯМР, суть которого в том, что ядра, находящиеся в магнитном поле, поглощают энергию радиочастотных импульсов, а при завершении действия импульса излучают эту энергию при переходе в первоначальное состояние. Индукция магнитного поля и частота прилагаемого радиочастотного импульса должны строго соответствовать друг другу, т.е. находиться в резонансе.

Читайте также:  Почему нельзя делать мрт если есть коронки

Роль классического рентгеновского исследования ограничена возможностью получения изображения только костных структур. Вместе с тем костные изменения ВНЧС, как правило, появляются на поздних стадиях заболеваний, что не позволяет своевременно оценить характер и степень выраженности патологического процесса. В 1970—1980-е годы для диагностики дисколигаментарных изменений применялась артротомо-графия с контрастированием полости сустава, которая как интервенционное вмешательство в настоящее время вытеснена более информативными для врача и необременительными для больного исследованиями. Широко используемая в современной клинике рентгеновская КТ позволяет детально оценить структуру костей, образующих ВНЧС, но чувствительность этого метода в диагностике изменений внутрисуставного диска слишком низка. В то же время МРТ как неинвазивная методика позволяет объективно оценить состояние мягкотканных и фиброзных структур сустава и прежде всего структуру внутрисуставного диска. Однако, несмотря на высокую информативность, МРТ ВНЧС не имеет стандартизованной методики выполнения исследования и анализа выявляемых нарушений, что порождает разночтение получаемых данных.

Под действием сильного внешнего магнитного поля в тканях создается суммарный магнитный момент, совпадающий по направлению с этим полем. Это происходит за счет направленной ориентации ядер атомов водорода (представляющих собой диполи). Величина магнитного момента в изучаемом объекте тем больше, чем выше напряженность магнитного поля. При выполнении исследования на изучаемую область воздействуют радиоимпульсы определенной частоты. При этом ядра водорода получают дополнительный квант энергии, который заставляет их подняться на более высокий энергетический уровень. Новый энергетический уровень является в то же время менее стабильным, а при прекращении действия радиоимпульса атомы возвращаются в прежнее положение — энергетически менее емкое, но более стабильное. Процесс перехода атомов в первоначальное положение называется релаксацией. При релаксации атомы испускают ответный квант энергии, который фиксируется воспринимающей катушкой-детектором.

Радиоимпульсы, воздействующие во время сканирования на «зону интереса», бывают различными (повторяются с разной частотой, отклоняют вектор намагниченности диполей под различными углами и т.д.). Соответственно и ответные сигналы атомов во время релаксации неодинаковые. Различают время так называемой продольной релаксации, или Т1, и время поперечной релаксации, или Т2. Время Т1 зависит от размера молекул, в состав которых входят диполи водорода, от мобильности этих молекул и тканях и жидких средах. Время Т2 в большей степени зависит от физических и химических свойств тканей. На основе времени релаксации (Т1 и Т2) получают Т|-и Тг-взвешенные изображения (ВИ). Принципиальным является то, что одни и те же ткани имеют различную контрастность на Т1 и Т2 ВИ. Например, жидкость имеет высокий МР-сигнал (белый цвет на томограммах) на Т2 ВИ и низкий МР-сигнал (темно-серый, черный) на Т1 ВИ. Жировая ткань (в клетчатке, жировой компонент губчатой кости) имеет высокой интенсивности МР-сигнал (белый) как на Т1, так и на Т2 ВИ. По изменению интенсивности МР-сиг-нала на Т1 и Т2 ВИ различными структурами можно судить об их качественном строении (кистозная жидкость).

В современной лучевой диагностике метод МРТ считается самым чувствительным при выявлении изменений в мягкотканных структурах. Этот метод позволяет получать изображения в любой плоскости без изменения положения тела пациента, безвреден для человека.

Однако существуют противопоказания к выполнению МРТ, связанные с повреждающим воздействием магнитного поля и радиоимпульсов на некоторые аппараты (сердечные водители ритма, слуховые аппараты). Не рекомендуется выполнять МРТ при наличии в организме пациента металлических имплантатов, клемм, инородных тел. Поскольку большинство МР-томографов представляют собой замкнутое пространство (туннель магнита), выполнение исследования у пациентов с клаустрофобией крайне затруднительно или невозможно. Другим недостатком МРТ является продолжительное время исследования (в зависимости от программного обеспечения томографа от 30 мин до 1 ч).

Поскольку оба сустава функционируют как единое целое, нужно обязательно проводить билатеральное исследование. Принципиальным является применение катушки (поверхностной) малого диаметра (8—10 см), что позволяет получить максимальное пространственное разрешение. При позиционировании катушки ее центр располагают на 1 — 1,5 см вентральнее наружного слухового прохода (рис. 3.33).

Методика МР-исследования.

Сканирование начинается при закрытом рте (в положении привычной окклюзии), а затем — при открытом до 3 см рте для определения максимальной физиологической смещаемого внутрисуставного диска и суставной головки. С целью удержания открытого рта в стабильном положении применяют фиксаторы из немагнитного материала.

gnatologia3.33_.JPG

Рис. 3.33. Позиционирование катушки-детектора при МРТ.

С — катушка; TMJ — ВНЧС; ЕАС — наружный слуховой проход.

Стандартный протокол МР-ис-следования включает выполнение парасагиттальных Т1 и Т2 ВИ, па-ракорональных Т1 ВИ в положении окклюзии, парасагиттальных Т1 ВИ при открытом рте и кинематику сустава (сканирование выполняют в несколько фаз при постепенном открывании рта от закрытого до максимально открытого положения). Парасагиттальные срезы планируются по плоскости, перпендикулярной длинной оси суставной головки. Зона исследования включает наружный слуховой проход, дно височной ямки, восходящую ветвь нижней челюсти. Эта проекция предпочтительна для исследования внутрисуставного диска и диффе-ренцировки других внутрисуставных структур.

Читайте также:  В каких случаях применяется мрт

Т1 ВИ позволяют четко дифференцировать форму, структуру, степень дегенерации диска, выявить изменения латеральной крыловидной мышцы (в том числе фиброз в верхнем брюшке), оценить состояние биламинарной зоны и связок, а также костных структур. После получения Т1 ВИ выполняют Т2 ВИ, аналогичные по геометрии сканирования (направлению плоскости сканирования, толщине срезов и промежутков между ними, величине поля обзора). Т2 В И позволяют четко выявлять даже минимальное количество жидкости в верхнем и нижнем отделах сустава, отек биламинарной зоны и периартикуляр-ных мягких тканей.

Следующий этап исследования — получение парасагиттальных Т1 взвешенных сканов при открытом рте. Эта последовательность помогает оценить подвижность внутрисуставного диска, смещаемость диска и суставной головки относительно друг друга. Оптимальная величина открывания рта 3 см, когда головка нормальной подвижности смещается под верхушку суставного бугорка. Паракорональные (фронтальные) срезы выполняются параллельно длинной оси суставных головок в положении окклюзии. Эти проекции предпочтительны для оценки бокового смещения диска, конфигурации и деформации суставной головки.

Парасагиттальные Т2 ВИ имеют меньшее анатомо-топографическое разрешение по сравнению с Т1 ВИ. Но Т2 ВИ более чувствительны и предпочтительны для выявления внутрисуставной жидкости при различных патологических состояниях.

Если ВНЧС изменен вторично, а первичный процесс локализуется в окружающих тканях, выполняют Т2-взвешенные томограммы в аксиальной проекции, а также Т1-взвешенные томограммы в аксиальной и фронтальной проекциях до и после контрастного усиления (внутривенного введения контрастных препаратов, содержащих хила-ты гадолиния). Контрастное усиление целесообразно при поражении ВНЧС вследствие ревматоидных процессов.

Быстрые последовательности метода используют при исследовании кинематики сустава для оценки положения диска и суставной головки в 5 различных фазах открывания рта: от положения окклюзии (1-я фаза) до максимально открытого рта (5-я фаза).

gnatologia3.34_.JPG

Рис. 3.34. Т1 ВИ в кососагиттальной проекции. Нормальное взаиморасположение суставных структур при центральной окклюзии. На схеме стрелкой обозначены центральная зона диска и вектор жевательной нагрузки.

Статичные МР-томограммы позволяют оценить положение диска и головки только в двух позициях. Кинематика дает четкое представление о подвижности структур сустава в процессе постепенного открывания рта.

Нормальная МР-анатомия. Косо-сагиттальные сканы позволяют визуализировать суставную головку как выпуклую структуру. На Т1 ВИ низкой интенсивности кортикальный слой костных элементов сустава, как и фиброзный хрящ суставных поверхностей, четко отличается от жиросодержащего трабекулярного компонента кости. Суставная головка и ямка имеют четкие округленные контуры. В положении центральной окклюзии (закрытый рот) суставная головка расположена в центре суставной ямки. При этом максимальная ширина суставной щели 3 мм, расстояние между поверхностью головки до передних и задних отделов суставной ямки одинаковое.

Внутрисуставной диск визуализируется как двояковогнутая структура низкой интенсивности и однородной структуры (рис. 3.34). Нерезкое повышение интенсивности сигнала задних отделов диска отмечается в 50 % неизмененных дисков и не должно рассматриваться как патология без соответствующих изменений формы и положения.

В положении окклюзии диск располагается между головкой и задним скатом суставного бугорка. В норме верхний полюс головки в положении окклюзии находится в позиции «12 часов» и переднезадние отклонения не должны превышать 10°.

Передние отделы биламинарной структуры прикрепляются к задней части диска и соединяют диск с задними отделами суставной капсулы.

Низкоинтенсивный сигнал диска и высокоинтенсивный сигнал биламинарной зоны на Т1 В И позволяют четко дифференцировать контуры диска.

ВНЧС функционирует как комбинация двух суставов. Когда рот начинает открываться, суставная головка совершает вращательные движения в нижних отделах сустава.

gnatologia3.35_.JPG

Рис. 3.35. Т1 ВИ в кососагиттальной проекции. Нормальное взаиморасположение внутрисуставных структур при открытом рте. Суставной диск — под верхушкой суставного бугорка, центральная зона диска — между верхушками бугорка и головки.

При дальнейшем открывании рта продолжается смещение диска вперед за счет тяги латеральной крыловидной мышцы. Когда рот полностью открыт, головка достигает вершины суставного бугорка, диск полностью покрывает суставную головку, причем между головкой и вершиной суставного бугорка располагается промежуточная зона диска (рис. 3.35).

gnatologia3.36_.JPG

Рис. 3.36. Т1 ВИ в косокорональнои проекции. Нормальное взаиморасположение суставных структур при центральной окклюзии. Диск как шапочка покрывает суставную головку.

Косокорональная проекция позволяет выявить медиальное или латеральное смещение диска. Диск определяется как низкоинтенсивная структура, покрывающая суставную головку как шапочка (рис. 3.36). Эта проекция предпочтительна для выявления латерализации положения головки, а также для оценки состояния субхондральных отделов ее костной структуры, обнаружения внутрисуставных остеофитов.

В.А.Хватова

Клиническая гнатология

Опубликовал Константин Моканов

Источник